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SUMMARY

Pyrolysis-gas Chromatographic investigations of head-to-head polymers of styrene and
a-methylstyrene were carried out. The monomer yields of the head-to-head polymers are
lower than those of the head-to-tail polymers. The pyrolysis products that directly reflect
the head-to-head linkages are produced on pyrolysis of head-to-head polymers. By the use
of these pyrolysis products, the content of the head-to-head linkages was evaluated for
polystyrene, and the difference in the degradation mechanisms between the head-to-head
and the head-to-tail polymers is discussed.

INTRODUCTION

In the conventional free-radical polymerization of asymmetric vinyl
monomers, head-to-tail (H-T) linkages normally predominate. It has been
reported that a substantial amount of the alternative head-to-head (H-H)
linkages [and also tail-to-tail (T-T) linkages] exist in certain polymers, such
as poly(vinyl fluoride) and poly(vinylidene fluoride) [1-3] , although a more
usual level is about 5970 or less in other polymers. The importance of the
influence of such structural variations on polymer properties is well estab-
lished. A number of methods have been suggested that lead to chains with
predominantly H-H linkages and the properties often differ significantly
from those of normal H-T polymers (i.e., glass transition temperature, stabil-
ity characteristic, flexibility, etc.) [4-11].

It is therefore important to evaluate the structural variations. Pyrolysis-
gas chromatography (Py-GC) is a useful method for the analysis of polymer
microstructures. In our previous work, the amounts of two units (1,2- and
1,3-) existing in cationically polymerized poly(3-methyl-1-alkenes) were
evaluated by Py-GC [12]. In this work, the differences in the Py-GC
behaviour of the H-H and the H-T polymers of both styrene and ct-methyl-
styrene were studied and the amounts of the H-H and the H-T linkages in
polystyrenes were evaluated.
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EXPERIMENTAL
Samples

Head-to-head polystyrenes (H-H PSt | and H-H PSt I1) were synthesized
according to the methods reported by Inoue et al. [10] and Richards and
Scilly [13], respectively. H-H PSt 111-VIII were obtained by hydrogenation
of styrene-2,3-diphenylbutadiene copolymers with various compositions.
The contents of the H-H linkages of H-H PSt 111-VIII were evaluated from
the UV spectra (absorbance at 250 nm) of the copolymers before hydrogena-
tion. H-T polystyrenes were prepared by the usual polymerization tech-
niques.

H-H poly(a-methylstyrene) (H-H PMSt) was synthesized by the method
used for H-H PSt 11 [10], and H-T PMSt was obtained by anionic polymeri-
zation with potassium metal.

The H-H contents of the polymers and the polymerization conditions are
given in Table 1.

Apparatus
A Curie-point pyrolyzer (Japan Analytical Industry JHP-2) was coupled

directly to a gas chromatograph (Yanaco GC-180) with dual flame-ioniza-

TABLE 1

Polymerization conditions and H-H contents of polymers

Polymer Monomer feed (g) Reaction H-H con-
time tent (%)
2,3-Diphenyl- Styrene (h)
butadiene
H-H Pst I 3.3 0 19 100
II 0 10.4 0.8 18.4 **
111 0.5 4.5 50 8.0
v 1.0 4.0 72 21.3
\% 1.5 3.5 92 36.5
VI 2.0 3.0 93 51.9
VII 3.0 2.0 114 73.5
VIII 4.0 1.0 62 88.4
H-H PMSt 0 12.0* 1.5 100

* a-Methylstyrene was used.
** Fstimated from the !H NMR spectrum.



tion detectors. The packed column used was a 2 m X 3 mm 1.D. stainless-
steel tube containing 60-80 mesh Celite 545 coated with 10% PEG 20M or
with 10% silicone DC 550. The column temperatures were 80  or 200
for the former and 185  for the latter. The flow-rate of the carrier gas
(nitrogen) was 40 ml min-1.

A Shimadzu GC-6AM gas chromatograph was used for the analysis,
equipped with a 40 m X 0.3 mm |.D. support-coated open-tubular (SCOT)
column with OV-17 as the stationary phase purchased from Shimadzu
(Kyoto, Japan). The column temperature was increased from 50  to 200
atarateof 6 minl. The nitrogen flow-rate was 0.2 ml min-1,

The peak areas. were integrated by a Shimadzu Chromatopac E-1A inte-
grator. Identification of the peaks on the pyrograms was carried out by
comparison of their retention data with those of known substances and/or
by Py-GC-mass spectrometry (Shimadzu PYR-10A and GC-MS-7000). The
dimers (except for 1,2diphenylethane) were prepared in our laboratory.

RESULTS AND DISCUSSION
Polystyrenes

When polystyrenes were prepared in the usual manner, the styrene mono-
mer, the dimer (2,4-diphenyl-1-butene) and the trimer (2,4,6-triphenyl-1-

he3tene) Were observed as the major pyrolysis products. In this work, the
pyrolysis products of monomer and dimer regions from polystyrenes having
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Fig. 1. Pyrograms of polystyrenes at 434°C (PEG 20M, at 80°C). Peaks: 1 = toluene; 2 =
ethylbenzene; 3 = n-propylbenzene; 4 = styrene; 5 = 8-methylstyrene.
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Fig. 2. Pyroggams of polystyrenes and poly(2,3-diphenylbutadiene) at 434°C (silicone DC
550, at 185°C). Peaks: 1 =styrene; 2 = 1,2-diphenylethane; 3 = 2 4-diphenyl-1-butene;
4 = unidentified H-H dimer; 5 = 1,4-diphenylbutane; 6 = 1,4-diphenyl-1-butene; 7 = 2,3-
diphenylbutadiene. Values in parentheses are relative peak area ratios.

H-H and H-T linkages were considered but trimers were not.

Figs. 1 and 2 show the pyrograms of H-H and H-T polystyrenes. The
pyrograms in Fig. 1 show the pyrolysis products with one benzene ring and
those in Fig. 2 show the pyrolysis products having two benzene rings which
correspond to the dimers. The difference between the H-H and the H-T
polymers appeared on their pyrograms in both the monomer and the diner
regions. The H-H polymers produce compounds other than the styrene
monomer (i.e., toluene, ethylbenzene, n-propylbenzene, etc.) in relatively
large amounts, compared with the H-T polymer. The pyrolysis products
corresponding to the dimers (i.e., 1,2-diphenylethane, 1,4-diphenylbutane
and 1,4diphenyl-1-butene) which reflect directly the H-H structures are
identified as shown in Fig. 2. The pyrogram of poly(2,3-diphenylbutadiene)
is also shown in Fig. 2. For this polymer, the 2,3-diphenylbutadiene
monomer is the major pyrolysis product. H-H polystyrenes prepared by
hydrogenation of the 2,3diphenylbutadiene units have hardly any double
bonds in their main chains, because very little 2,3-diphenylbutadiene is ob-
served in the pyrolysis products.

From the relative peak area ratios of the dimers, the pyrogram of H-H pst



Il is considered to be intermediate between those of H-H Pst | and H-T Pst.
This is illustrated in Fig. 1. It is assumed that H-H Pst Il is not entirely com-
posed of the H-H linkages, as Inoue et al. [10] reported. This result was sup-
ported by the IH and 13c NMR spectra of these three polymers (not shown).

AllLH-T polystyrenes prepared by various polymerization techniques show
similar pyrograms and the relative amounts of the pyrolysis products are
nearly identical. Even with H-T Pst obtained by radical polymerization only
small amounts of the H-H dimers are produced. This fact suggests the
existence of small amounts of H-H linkages in H-T Pst.

The lower monomer yield of H-H Pst | than that of H-T Pst results from
the difference in their degradation mechanisms. By random main-chain scis-
sions, the two radicals of (1) and (2) are produced from pure H-T Pst and
the three radicals of (3), (4) and (5) from completely H-H structured Pst.

The depolymerization of (1) to the monomer may be smoother and more
continuous than that of (3), which is predominantly produced from the H-H
linkages, because the secondary radical of (3) may "unzip" one monomer
unit, with the resulting production of a relatively unstable primary radical.
In addition, because of reproducing a relatively stable secondary radical, it is
energetically favourable for (3) to give the dimers such as 1,4-diphenyl-
butane, 1,4diphenyl-1-butene, etc.; the H-H polymer produces a large
amount of dimers. From the results obtained from differential thermogra-
vimetry and thermal gravimetric analysis, Helbig et al. [14] have stated that
there is no significant difference in thermal stability between the H-H and
the H-T polymers owing to the lack of the fourth substituent on the carbon
atom of the H-H linkages in Pst. However, differences in the distribution

of the pyrolysis products on the pyrograms between H-H Pst and H-T Pst
can apparently be observed and be qualitatively interpreted as mentioned
above. The relative peak area ratios for H-H Pst 11 are closer to those for
H-T Pst than to those for H-H Pst I. This Py-GC result agreed well with the
NMR results.
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Polymers with various compositions of H-H and H-T linkages were pre-
pared by hydrogenation of the copolymers of styrene and 2,3-diphenyi-
butadiene. Their pyrograms are similar to that of H-H Pst 11, although the
relative amounts of the pyrolysis products differ according to the polymer.

There is a serious problem to be solved. In Fig. 2, the H-T dimer of 2,4-
diphenyl-1-butene (3) and the H-H dimer with M+ = 208 which cannot be
identified (4) have identical retention times measured on packed columns of
silicone DC 550 and other commonly used stationary phases. It is impossible
for completely H-H structured Pst | to produce 2,4-diphenyl-1-butene on
pyrolysis.

In order to separate the peaks of 2,4-diphenyl-1-butene and the unidenti-
fied H-H dimer, the glass capillary column was used. Fig. 3 shows typical
pyrograms of H-H Pst I, H-H Pst VI which has ca. 50% of H-H and H-T
linkages, and radically polymerized H-T Pst obtained by the use of the
capmary column at a pyrolysis temperature of 358 . The peaks of 2,4-
dipheny11-butene (3) and the unidentified H-H dimer (4) are separated well.

The fraction of the peak area of unidentified H-H dimer in the total peak
areas of these two pyrolysis products is plotted against the H-H content of
each Pst in Fig. 4. The content of H-H linkage means the value of the frac-
tion of H-H and T-T linkages in all linkages, that is, (H-H + T-T)/(H-H +
T-T + H-T). This peak area ratio of H-H Pst 11 (closed circle in Fig. 4) shows
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Fig. 3. Pyrograms of polystyrenes at 358°C (capillary column). Peaks: 1 = styrene; 2 =
1,2-diphenylethane; 3 = 2,4-diphenyl-1-butene; 4 = unidentified H-H dimer; 5 = 1,4-di-
phenylbutane; 6 = 1,4-diphenyl-1-butene.

Fig. 4. Fraction of unidentified H-H dimer peak area. ® H-H PSt I; ®, H-H PSt II; 0, H-H
PSt III—VIII. PA(3) = peak area of 2,4-diphenyl-1-butene; PA(4) = peak area of unidenti-
fied H-H dimer.



that the content of H-H linkages in this polymer is ca. 18%. This is a value
comparable to that estimated from the '"H NMR spectrum. The peak area
ratios for all H-T polystyrenes were nearly zero. On the pyrograms, however,
the H-H dimers are clearly observed although their amounts are very small. It
is concluded that these H-T polystyrenes do not consist of perfect H-T
linkages but that the H-H contents of these H-T polymers are below 1%.

Poly (ar-methylstyrene)

Fig. 5 shows the pyrograms of H-H and H-T poly(a-methylstyrenes) ob-
tained at a pyrolysis temperature of 434 . This H-H polymer is composed
entirely of H-H linkages as judged by the comparison of its 13C NMR spec-
trum with that of the H-T polymer, shown in Fig. 6. With poly(c-methyl-
styrenes), the monomer yields are higher than those of polystyrenes and
other compounds are produced in only small amounts. The monomer yield
of H-H PMSt is smaller than that of H-T PMSt and the characteristic pyrolysis
products which reflect the H-H linkages, 2,5-diphenylhexane and 2,5-di-
phenyl-1-hexene, are observed in the dimer region on the pyrogram. The
major dimer from the H-T polymer is unidentified (M+ = 236, not 4-methyl-
2,4diphenyl-1-pentene). The difference in monomer yields may result from
the ease of scission of the H-H linkage to produce a tertiary radical and the
difficulty in the continuous depolymerization to the monomer after the
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Fig. 5. Pyrograms of poly(a-methylstyrenes) at 434°C (PEG 20M, at 200°C). Peaks: 1 =
a-mathylstyrene; 2 = 4-methyl-2,4-diphenylpentane; 3 = 2,5-diphenylhexane; 4 = 2,4-di-
phenyl-1-pentene; 5 = 4-methyl-2,4-diphenyl-1-per.tene; 6 = unidentified H-T dimer; 7 =
2,5-diphenyl-1-hexene. Values in parentheses are relative peak area ratios.
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Fig. 6. 13C NMR spectra of H-H and H-T poly(a-methylstyrenes) in CDCl;.

random chain scission in the case of the H-H polymer, as described in the
degradation mechanisms of polystyrenes.

The apparent difference in the pyrograms between the H-H and the H-T
polymers is due to the following structural factor. The H-H linkages in PMSt
are weakened by steric hindrance between the substituents of two
guatemary carbon atoms and the H-T polymer, having quaternary carbon
atoms in its main chain like PMSt, has a very high monomer yield. With
PMSt, polymers with different compositions of H-H and H-T linkages cannot
be prepared. Therefore, it is not possible to draw quantitative conclusions.
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